The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny
نویسندگان
چکیده
Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost approximately 2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5' regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.
منابع مشابه
MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line.
Germ cell development in C. elegans requires that the X chromosomes be globally silenced during mitosis and early meiosis. We previously found that the nuclear proteins MES-2, MES-3, MES-4 and MES-6 regulate the different chromatin states of autosomes versus X chromosomes and are required for germline viability. Strikingly, the SET-domain protein MES-4 is concentrated on autosomes and excluded ...
متن کاملOpposing activities of DRM and MES-4 tune gene expression and x-chromosome repression in aenorhabditis elegans germ cells
During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also...
متن کاملOpposing Activities of DRM and MES-4 Tune Gene Expression and X-Chromosome Repression in Caenorhabditis elegans Germ Cells
During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also...
متن کاملCaenorhabditis elegans MES-3 is a target of GLD-1 and functions epigenetically in germline development.
The maternal-effect sterile (MES) proteins are maternally supplied regulators of germline development in Caenorhabditis elegans. In the hermaphrodite progeny from mes mutant mothers, the germline dies during larval development. On the basis of the similarities of MES-2 and MES-6 to known transcriptional regulators and on the basis of the effects of mes mutations on transgene expression in the g...
متن کاملMORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.
The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characteriz...
متن کامل